Notes on codes, projects and everything
So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)This post is purely based on my own speculation as there’s no experiment on real-life data to actually back the arguments. I am currently trying to document down a plan for my experiment(s) on recommender system (this reminds me that I have not release the Flickr data collection tool :/) and my supervisor advised to write a paragraph or two on some of the key things. Since he is not going to read it, so I might as well just post it here as a note.
I was asked to evaluate fuzzy c-means to find out whether it is a good clustering algorithm for my MPhil project. So I spent the whole afternoon reading through some tutorial to get some basic understanding. Then I thought why not implement it in Clojure because it doesn’t look too complicated (I was so wrong…).
Writing a usable form and database library has always been a painful experience. So why bother re-inventing the wheel when there are so many to choose from already? I am writing one mostly for learning purpose. After numerous attempts, I finally get my form and database library in shape. It is nowhere complete, but nor it is perfect, but it is currently the implementation that is closest to my original design. I will keep working on it so it can be used in my personal projects in the future.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
After delaying for quite some time, I think I should start the project before I get bored with it. The project will be either hosted on this current domain (coolsilon.com) at least for now and will probably move to another domain if needed. The site will be either a blog aggregator or just a simple article submission site that works kinda like digg / reddit, however, to be promoted to the frontpage the submission would have to impress the opposite group.
This update took me quite a bit more time than I initially expected. Anyway, I have done some refactoring work to the original code, and thought it would be nice to document the changes. Overall, most of the changes involved the refactoring of function names. I am not sure if this would stick, but I am quite satisfied for now.