Notes on codes, projects and everything
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
I wanted to try using virtuoso as the storage engine for Redland but unfortunately there is no librdf-storage-virtuoso package for Ubuntu. After getting some help from @dajobe, I attempted to build the packages myself. Although it takes quite some time to build packages, but not too difficult it seems.
After reading through the documentation, I find that the role based ACL and work flow can be more tightly integrated. Therefore I made all the transaction into many FSMs and my work flow component now consists of one work flow library and one work flow management model. As I am going a more normalized design (I use denormalized design in work as it deals with a lot of documents, however for a small project like mine, a denormalized design should do well).
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
I have been following this excellent guide written by Benjamin Thomas to set up my virtual machine for development purpose. However, when I am starting to configure a Ubuntu Quantal alpha machine, parts of the guide became inapplicable. Hence, this post is written as a small revision to the previously mentioned guide.
After the last post, I found that it may be fun to write a wrapper for YUI in order to make it behave like jQuery. Therefore, the code below is clearly mainly for self-amusement and is not intended to be used in production projects. However, through coding this, I found that although the difference in design, but YUI is obviously capable to do what jQuery offers (if not more). I will not continue working on this so whoever interested may just copy and paste the code to further developing it.