Notes on codes, projects and everything
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Folksonomy is a neologism of two words, ’folk’ and ’taxonomy’ which describes conceptual structures created by users [4, 5]. A folksonomy is a set of unstructured collaborative usage of tags for content classification and knowledge representation that is popularized by Web 2.0 and social applications [1, 5]. Unlike taxonomy that is commonly used to organize resources to form a category hierarchy, folksonomy is non-hierarchical and non-exclusive [3]. Both content hierarchy and folksonomy can be used together to better content classification.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
Call me a cheapskate, as I still have not subscribe to a mobile data plan after purchasing my second smartphone, namely Nokia N9. There’s this ‘allow background connections’ option but it doesn’t care whether the connected network is a WLAN network or mobile data network. After finding out that Nokia has no interest in creating another separate option so that each type of network has their respective ‘allow background connections’ switch, I decided to make one for my own.
This post is purely based on my own speculation as there’s no experiment on real-life data to actually back the arguments. I am currently trying to document down a plan for my experiment(s) on recommender system (this reminds me that I have not release the Flickr data collection tool :/) and my supervisor advised to write a paragraph or two on some of the key things. Since he is not going to read it, so I might as well just post it here as a note.