Notes on codes, projects and everything
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
After publishing the previous note on setting up my development environment, I find myself spending more time in the CLI (usually via SSH from host). Then I find myself not needing all the GUI apps in a standard Ubuntu desktop environment so I went ahead and set up a new environment based on Ubuntu Quantal server edition beta-1. For some reason my network stopped working and didn’t really want to spend time finding out the cause, so I reinstalled everything again today using the final installer, as well as the updated Virtualbox 4.2.6.
I often struggle to get my Javascript code organized, and have tried numerous ways to do so. I have tried putting relevant code into classes and instantiate as needed, then abuse jQuery’s data() method to store everything (from scalar values to functions and callbacks). Recently, after knowing (briefly) how a jQuery plugin should be written, it does greatly simplify my code.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Sometimes I really doubt about the advantage of recycling old stuff to fund for new units beyond goodwill. Sure you get to convince yourself that you are saving the environment by doing so, and it also saves money in the long run. However, I didn’t realize how much it generates it may be after trying to work out an answer for a fictional IQ question.