Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
Just managed to migrate all my blog sites to one centralized multi-site, so no more half-baked solution and hopefully this brings better plugin compatibility. I have not check with other related services (like Google Webmaster Tools) whether this cause any breakage though. Well, the main purpose of this blog post is actually a draft of what I did for the past two months for my postgraduate programme. Yea, I should have posted more stuff to this blog (just realized that my last post here is already like half a year ago).
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
This is basically a small incremental update to my script published here. For some reason, the previous version of the script didn’t really work, so this release should fix the problem. Besides fixing the problem where the daemon did not actually launched at start up, I have added a settings applet for this script as well.
The Nand2Tetris part I at coursera is very much my first completed course. It was so fun to actually work through the material and it feels amazing to know how simple it is to actually build a computer from scratch. While it is simple, it doesn’t mean the course itself is easy though. I was struggling to get the CPU wired up properly that I spent two to three days just to get it working.
I really don’t know how to start explaining what is a Dragon Curve. However, I find it is interesting enough after finding out that there’s actually a fixed pattern of occurrence. Therefore I spent some time writing a series of scripts to plot the generated fractal into a graph. What I didn’t expect is, the series get really complicated after a while.