Notes on codes, projects and everything
This is the year I kept digging my old undergraduate notes on Statistics for work. First was my brief attempt wearing the Data Scientist performing ANOVA test to see if there’s correlation between pairs of variables. Then just recently I was tasked to analyze a survey result for a social audit project.
(more…)So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)A few years ago, I was asked to build a game or simulation (alongside 2048) as a part of a job application. Being very impressed with Explorable Explanations, I implemented Conway’s Game of life with Javascript and jQuery (that was before ES6 became popular). Then I made a very simple grid maker jQuery plugin to dynamically generate a grid of divs. If you check the source code, you may realize I rely on Underscore.js a lot back then.
(more…)Usually I take about a week to learn a new language so I can start doing some real work with it. After all a programming language (at least the high level and dynamic ones) is just assignment, calculation, branching, looping and reuse (and in certain cases, concurrency/parallelism, not gonna dive deep in defining the difference though). Well, that was true until I started learning Rust, partly for my own leisure.
While following through the Statistical Learning course, I came across this part on doing regression with boosting. Then reading through the material, and going through it makes me wonder, the same method may be adapted to Erik Bernhardsson‘s annoy algorithm.
(more…)I finally put in some time and effort learning myself a bit of Rust. Though I am still struggling with ownership and lifetimes (which is essentially everything about the language, to be honest), I find it more interesting compared to Golang, which is relatively boring, though being functional (no pun intended). While learning the language, the one thing I came across often is the Option
enum, then I remembered that I read something about Monad.
Recently I volunteered in building a site that reports whether certain websites are blocked locally (please don’t ask why that is happening). As it is a very simple app reporting status I wanted it to be easily scrape-able. One of the decision made was I want it to have things to see on first load, this practically removes the possibility of using react, which is my current favorite.
Javascript is getting so foreign to me these days, but mostly towards a better direction. So I recently got myself to learn react through work and the JSX extension makes web development bearable again. On the other hand, I picked up a little bit on Vue.js but really hated all the magic involved (No I don’t enjoy putting in code into quotes).
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX
pattern.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
This is the second part of the golang learning rant log. Previously on (note (code cslai)) I managed to make each line in the CSV into a hash map. So today I am going to make it into JSON Lines.
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX
pattern.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently the term “Semantic Web” becomes extremely popular that Sitepoint blogs keep posting articles on this topic (1, 2). In my college days, I learned about Semantic Network and I wonder if there is some relationship between them. I’m not sure whether I get the concept correctly but in this article I would like to revise a bit on semantic network before going to semantic web. Please correct me if I’m wrong.