Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Long long time ago when I was working with Prolog, I was introduced to list. Unlike arrays in most popular programming languages, we weren’t really able to access to a particular member directly. Every list is constructed in a chain-like structure.
Another half a day spent on figuring out how to package my daemon properly, fortunately with help from friends over at #harmattan IRC channel as well as cckwes, I finally get the deb package generated properly. So just a quick reminder on what my daemon does, it is just a quick hack that toggles the ‘allow background connections’ on and off depending which kind of data network a user is connected to. Apparently I am not the only one who are looking for this, as a feature request was filed long long time ago.
Recently I find some of my pet projects share a common pattern, they all are based on some kind of grids. So I find myself writing similar piece of code over and over again. While re-inventing wheels is quite fun, especially when you learn new way of getting things done with every iteration, it is actually quite tedious after a while.
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.