Notes on codes, projects and everything
So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)While following through the Statistical Learning course, I came across this part on doing regression with boosting. Then reading through the material, and going through it makes me wonder, the same method may be adapted to Erik Bernhardsson‘s annoy algorithm.
(more…)In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
This post is purely based on my own speculation as there’s no experiment on real-life data to actually back the arguments. I am currently trying to document down a plan for my experiment(s) on recommender system (this reminds me that I have not release the Flickr data collection tool :/) and my supervisor advised to write a paragraph or two on some of the key things. Since he is not going to read it, so I might as well just post it here as a note.
Maintaining state in Javascript is not too difficult once you catch the idea. However, as I am not a super brilliant programmer, it takes me some time to find a way to maintain state as YUI Event does in jQuery.
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX
pattern.
Another day, another programming assessment test. This time I was asked to generate some random data, then examine them to get their data type. Practically it is not a very difficult thing to do and I could probably complete it in fewer lines. I am pretty sure there are better ways to do this, as usual though.
It is very much expected that there will be endless stream of new (and often times better) tools introduced to solve the same set of problems. While I am slowly resuming my programming work, and in the process of reviving my very much dead postgrad project, I found some alternative to the tools I had used in the past. I suppose I shall just jot them down here so that there’s a reference for later use.