Notes on codes, projects and everything
So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)While following through the Statistical Learning course, I came across this part on doing regression with boosting. Then reading through the material, and going through it makes me wonder, the same method may be adapted to Erik Bernhardsson‘s annoy algorithm.
(more…)In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
The Sports Tracker app for my awesome Nokia N9 is not receiving any updates and doesn’t look like things are going to change any time soon. Recently the development team at Sports Tracker published a status update post and sadly there’s no mention of N9 port at all. It’s really sad considering how incomplete the N9 port is at the moment (horrible GPS positioning, no pedometer to name a few).
A really sweet new feature in the recently released update is the ability to change lockscreen shortcut. Unfortunately there is no easy way to change connection with my Jolla unlike my old Nokia N9 (no pun intended). As I have not been using my N9 for quite some time, I was only reminded when I came across this thread on TMO.
Another half a day spent on figuring out how to package my daemon properly, fortunately with help from friends over at #harmattan IRC channel as well as cckwes, I finally get the deb package generated properly. So just a quick reminder on what my daemon does, it is just a quick hack that toggles the ‘allow background connections’ on and off depending which kind of data network a user is connected to. Apparently I am not the only one who are looking for this, as a feature request was filed long long time ago.
My cloud storage is nearly exploding, and I am not in a good position to start subscribing for more storage (Yes, I am still #opentowork). Considering I just moved my domain settings to Cloudflare and started using Cloudflare tunnel, I figure I probably should just back up some of my photos, and host it on my workstation.
(more…)Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.