Notes on codes, projects and everything
So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)While following through the Statistical Learning course, I came across this part on doing regression with boosting. Then reading through the material, and going through it makes me wonder, the same method may be adapted to Erik Bernhardsson‘s annoy algorithm.
(more…)In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Just happened to see this post a few months ago, and the author created another cloud that uses almost the same technique to ‘visualize’ a list of countries. The author uses PHP to generate the cloud originally and I thought I may be able to do in javascript. After some quick coding I managed to produce something similar to the first example, source code after the jump.
I was trying to learn scala and clojure to find one that I may want to use in my postgraduate project. After trying to learn scala for a couple of days, I gave up because I really don’t like the syntax (too OO for my liking). Then I continued with clojure and found myself liking the syntax better.
The making of this plugin was completely a random act of hand-itchiness. A friend of mine (@cornguo) published a fun app online. There is a name for this kind of app, but I can’t recall at the moment. It typically displays some buttons (usually in a grid), and clicking them causes some sound to be played. The interesting part in cornguo’s app is that there’s a text-input field where the name of the buttons can be typed-in for replaying.
After publishing the previous note on setting up my development environment, I find myself spending more time in the CLI (usually via SSH from host). Then I find myself not needing all the GUI apps in a standard Ubuntu desktop environment so I went ahead and set up a new environment based on Ubuntu Quantal server edition beta-1. For some reason my network stopped working and didn’t really want to spend time finding out the cause, so I reinstalled everything again today using the final installer, as well as the updated Virtualbox 4.2.6.
In the last part, I implemented a couple of primitive functions so that they can be applied in the following chapters. The second chapter of the book, is titled “Do it again, and again, and again…”. The title already hints that readers will deal with repetitions throughout the chapter.