Notes on codes, projects and everything
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Sometimes I really doubt about the advantage of recycling old stuff to fund for new units beyond goodwill. Sure you get to convince yourself that you are saving the environment by doing so, and it also saves money in the long run. However, I didn’t realize how much it generates it may be after trying to work out an answer for a fictional IQ question.
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).
Recently I am being assigned to work on a FSM based workflow system to enable my other colleagues to use it in their application. I am rather impressed with the simplicity of the workflow system (initially designed by my Technical Director) and decided to post some notes here. The workflow system was developed for CodeIgniter PHP framework and Drupal CMS.
I just failed a programming assessment test miserably yesterday and thought I should at least document it down. However, the problem with this is that the questions are copyrighted, so I guess I would write it from another point of view. So the main reason I failed was because I chose the wrong strategy to the problem, thinking it should be solution but as I put in time to that I ended up creating more problems.
After comparing my own implementation of MVC with CodeIgniter’s, now I’m comparing Kohana’s and Zend’s. I have just shifted from CodeIgniter to Kohana recently in work and is currently learning on how to use Zend Framework to build my web-app. As everybody knows, Zend Framework is more like a collection of library classes than a framework a la Ruby on Rails, using MVC in Zend Framework would require one to begin from bootstrapping stage. However, in Kohana, just like other frameworks, bootstrapping is done by the framework itself so the developer will get an installation that almost just works (after a little bit of configuration).
array_map function is a function that I use the most in my php scripts recently. However, there are times where I want to pass some non-array into it, therefore often times I have code like the snippet shown below:
$result = array_map(
'some_callback',
array_fill(0, count($some_array), 'some_string'),
array_fill(0, count($some_array), 'some_other_string'),
$some_array
)
It doesn’t look good IMO, as it makes the code looks complicated. Hence, after seeing how the code may vary in all different scenarios, I created some functions to clean up the array_map call as seen above. Code snippet after the jump