Notes on codes, projects and everything
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).
Previously, I started practising recursions by implementing a type check on lat (list of atoms), and ismember
(whether an atom is a member of a given lat). Then in the third chapter, named “Cons the Magnificent”, more list manipulation methods are being introduced.
Recently I find some of my pet projects share a common pattern, they all are based on some kind of grids. So I find myself writing similar piece of code over and over again. While re-inventing wheels is quite fun, especially when you learn new way of getting things done with every iteration, it is actually quite tedious after a while.
In the last part, I implemented a couple of primitive functions so that they can be applied in the following chapters. The second chapter of the book, is titled “Do it again, and again, and again…”. The title already hints that readers will deal with repetitions throughout the chapter.
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
I finally put in some time and effort learning myself a bit of Rust. Though I am still struggling with ownership and lifetimes (which is essentially everything about the language, to be honest), I find it more interesting compared to Golang, which is relatively boring, though being functional (no pun intended). While learning the language, the one thing I came across often is the Option
enum, then I remembered that I read something about Monad.
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX
pattern.
I need a slide show script for my portfolio pages but couldn’t find a good one anywhere so I decided to write one myself. The slide show script will be able to display image and the respective description in a predefined order. However, in this version, visitors would not be able to directly jump to a particular slide yet. The script is written in prototype‘s object-orientation approach hence you need to have prototype called.
The making of this plugin was completely a random act of hand-itchiness. A friend of mine (@cornguo) published a fun app online. There is a name for this kind of app, but I can’t recall at the moment. It typically displays some buttons (usually in a grid), and clicking them causes some sound to be played. The interesting part in cornguo’s app is that there’s a text-input field where the name of the buttons can be typed-in for replaying.
As the name implies, Resource Definition Framework, or RDF in short, is a language to represent information about resources in world wide web. Information that can be represented is mostly metadata like title (assuming the resource is a web-page), author, last modified date etc. Besides representing resource that is network-accessible, it can be used to represent things that cannot be accessed through the network, as long as it can be identified using a URI.