Notes on codes, projects and everything
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
The making of this plugin was completely a random act of hand-itchiness. A friend of mine (@cornguo) published a fun app online. There is a name for this kind of app, but I can’t recall at the moment. It typically displays some buttons (usually in a grid), and clicking them causes some sound to be played. The interesting part in cornguo’s app is that there’s a text-input field where the name of the buttons can be typed-in for replaying.
This is the year I kept digging my old undergraduate notes on Statistics for work. First was my brief attempt wearing the Data Scientist performing ANOVA test to see if there’s correlation between pairs of variables. Then just recently I was tasked to analyze a survey result for a social audit project.
(more…)Recently the term “Semantic Web” becomes extremely popular that Sitepoint blogs keep posting articles on this topic (1, 2). In my college days, I learned about Semantic Network and I wonder if there is some relationship between them. I’m not sure whether I get the concept correctly but in this article I would like to revise a bit on semantic network before going to semantic web. Please correct me if I’m wrong.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.