Notes on codes, projects and everything
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
It is very much expected that there will be endless stream of new (and often times better) tools introduced to solve the same set of problems. While I am slowly resuming my programming work, and in the process of reviving my very much dead postgrad project, I found some alternative to the tools I had used in the past. I suppose I shall just jot them down here so that there’s a reference for later use.
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.
Folksonomy is a neologism of two words, ’folk’ and ’taxonomy’ which describes conceptual structures created by users [4, 5]. A folksonomy is a set of unstructured collaborative usage of tags for content classification and knowledge representation that is popularized by Web 2.0 and social applications [1, 5]. Unlike taxonomy that is commonly used to organize resources to form a category hierarchy, folksonomy is non-hierarchical and non-exclusive [3]. Both content hierarchy and folksonomy can be used together to better content classification.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
I need a slide show script for my portfolio pages but couldn’t find a good one anywhere so I decided to write one myself. The slide show script will be able to display image and the respective description in a predefined order. However, in this version, visitors would not be able to directly jump to a particular slide yet. The script is written in prototype‘s object-orientation approach hence you need to have prototype called.