Notes on codes, projects and everything
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Semantic Web is not just about putting data on the web, but also making links to allow a person as well as a machine to explore the web of data. Links are made in the web of data connects arbitrary things together as described by RDF as opposed to links in the web of hypertext, where links connects to only web-resources. Linkage of arbitrary things then allow related things to be found while performing search.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
A few years ago, I was asked to build a game or simulation (alongside 2048) as a part of a job application. Being very impressed with Explorable Explanations, I implemented Conway’s Game of life with Javascript and jQuery (that was before ES6 became popular). Then I made a very simple grid maker jQuery plugin to dynamically generate a grid of divs. If you check the source code, you may realize I rely on Underscore.js a lot back then.
(more…)The making of this plugin was completely a random act of hand-itchiness. A friend of mine (@cornguo) published a fun app online. There is a name for this kind of app, but I can’t recall at the moment. It typically displays some buttons (usually in a grid), and clicking them causes some sound to be played. The interesting part in cornguo’s app is that there’s a text-input field where the name of the buttons can be typed-in for replaying.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.