Notes on codes, projects and everything
With most of my stuff more or less set, I guess it is time to start documenting the steps before I forget. So I heard a lot of good things about docker for quite some time, but haven’t really have the time to do it due to laziness (plus my relatively n00b-ness in the field of dev-ops). Just a few months ago, I decided to finally migrate away from webfaction (thanks for all the superb support) to a VPS so I can run more things on it.
Recently I find some of my pet projects share a common pattern, they all are based on some kind of grids. So I find myself writing similar piece of code over and over again. While re-inventing wheels is quite fun, especially when you learn new way of getting things done with every iteration, it is actually quite tedious after a while.
After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)I was asked to evaluate fuzzy c-means to find out whether it is a good clustering algorithm for my MPhil project. So I spent the whole afternoon reading through some tutorial to get some basic understanding. Then I thought why not implement it in Clojure because it doesn’t look too complicated (I was so wrong…).
Had a discussion with my secondary supervisor and it turned out pretty bad because I wasn’t fully prepared and he was rushing to somewhere else for a meeting. So I am jotting down a brief summary (read: highly based on personal/subjective feelings/opinions) of my readings here to help organize things before the followup meeting that is taking place next week.
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.