Notes on codes, projects and everything
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).
Previously, I started practising recursions by implementing a type check on lat (list of atoms), and ismember
(whether an atom is a member of a given lat). Then in the third chapter, named “Cons the Magnificent”, more list manipulation methods are being introduced.
Recently I find some of my pet projects share a common pattern, they all are based on some kind of grids. So I find myself writing similar piece of code over and over again. While re-inventing wheels is quite fun, especially when you learn new way of getting things done with every iteration, it is actually quite tedious after a while.
In the last part, I implemented a couple of primitive functions so that they can be applied in the following chapters. The second chapter of the book, is titled “Do it again, and again, and again…”. The title already hints that readers will deal with repetitions throughout the chapter.
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
Call me a cheapskate, as I still have not subscribe to a mobile data plan after purchasing my second smartphone, namely Nokia N9. There’s this ‘allow background connections’ option but it doesn’t care whether the connected network is a WLAN network or mobile data network. After finding out that Nokia has no interest in creating another separate option so that each type of network has their respective ‘allow background connections’ switch, I decided to make one for my own.
As the name implies, Resource Definition Framework, or RDF in short, is a language to represent information about resources in world wide web. Information that can be represented is mostly metadata like title (assuming the resource is a web-page), author, last modified date etc. Besides representing resource that is network-accessible, it can be used to represent things that cannot be accessed through the network, as long as it can be identified using a URI.
A few years ago, I was asked to build a game or simulation (alongside 2048) as a part of a job application. Being very impressed with Explorable Explanations, I implemented Conway’s Game of life with Javascript and jQuery (that was before ES6 became popular). Then I made a very simple grid maker jQuery plugin to dynamically generate a grid of divs. If you check the source code, you may realize I rely on Underscore.js a lot back then.
(more…)While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.
I often struggle to get my Javascript code organized, and have tried numerous ways to do so. I have tried putting relevant code into classes and instantiate as needed, then abuse jQuery’s data()
method to store everything (from scalar values to functions and callbacks). Recently, after knowing (briefly) how a jQuery plugin should be written, it does greatly simplify my code.