Notes on codes, projects and everything
It is useful to have the terminal around whenever I code. However, while real screen estate is finite, having a terminal further limiting the amount of information that can be displayed at the same time. The problem with the terminal is that I don’t really need it all the time, so I usually find it buried under a group of windows.
Back then when I was attending a job interview, I was asked to write a Fizz Buzz program to prove that my coding ability. There was only a pen and a piece of paper, so basically means there’s no way I can refer to the documentation for the API syntax. Fortunately I somehow managed to remember and not screw up.
In the last part, I implemented a couple of primitive functions so that they can be applied in the following chapters. The second chapter of the book, is titled “Do it again, and again, and again…”. The title already hints that readers will deal with repetitions throughout the chapter.
After coded enough Javascript few months back, I found that there are a couple of functions that I kept re-using in different projects. Therefore I took some time to refactor them and re-arrange them into a single file. The common code that I keep reusing even today consists of functions that does prototypical inheritance, scope maintenance, some jquery stuff, google maps api stuff and some general ajax application related code.
Semantic Web always sounds like some magic power stuff that a group of people keep yelling about. Chances are, if one is into web development, he/she would have heard of it somehow or other. However, despite the supposedly wide awareness about it, are we using it? Or rather, am I publishing enough data to Semantic Web? OK, I don’t, but why?
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.