Notes on codes, projects and everything
Recently the term “Semantic Web” becomes extremely popular that Sitepoint blogs keep posting articles on this topic (1, 2). In my college days, I learned about Semantic Network and I wonder if there is some relationship between them. I’m not sure whether I get the concept correctly but in this article I would like to revise a bit on semantic network before going to semantic web. Please correct me if I’m wrong.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
This is the second part of the golang learning rant log. Previously on (note (code cslai)) I managed to make each line in the CSV into a hash map. So today I am going to make it into JSON Lines.
Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
Should have done this earlier, I was just being lazy to go through all the steps to publish it properly. So here it is, the full source is published to bitbucket. Feel free to fork the project if you are interested. I have not attach a licence to it but it will most probably be BSD licence. I have also uploaded the latest 0.0.2 release to bitbucket and would update the download link posted previously soon.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.