Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
I was trying to learn scala and clojure to find one that I may want to use in my postgraduate project. After trying to learn scala for a couple of days, I gave up because I really don’t like the syntax (too OO for my liking). Then I continued with clojure and found myself liking the syntax better.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
I just failed a programming assessment test miserably yesterday and thought I should at least document it down. However, the problem with this is that the questions are copyrighted, so I guess I would write it from another point of view. So the main reason I failed was because I chose the wrong strategy to the problem, thinking it should be solution but as I put in time to that I ended up creating more problems.
I have been following this excellent guide written by Benjamin Thomas to set up my virtual machine for development purpose. However, when I am starting to configure a Ubuntu Quantal alpha machine, parts of the guide became inapplicable. Hence, this post is written as a small revision to the previously mentioned guide.
With most of my stuff more or less set, I guess it is time to start documenting the steps before I forget. So I heard a lot of good things about docker for quite some time, but haven’t really have the time to do it due to laziness (plus my relatively n00b-ness in the field of dev-ops). Just a few months ago, I decided to finally migrate away from webfaction (thanks for all the superb support) to a VPS so I can run more things on it.