Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
Ever wanted to find the number of days between two dates without counting weekend (Saturdays and Sundays)? In PHP you typically needs to do a lot of calculation and a lot of factors needs to be considered. Therefore, in the end you will end up having a whole bunch of code that you will probably start asking yourself whether you are programming a web-calendar or something similar.
I really don’t know how to start explaining what is a Dragon Curve. However, I find it is interesting enough after finding out that there’s actually a fixed pattern of occurrence. Therefore I spent some time writing a series of scripts to plot the generated fractal into a graph. What I didn’t expect is, the series get really complicated after a while.
I need a slide show script for my portfolio pages but couldn’t find a good one anywhere so I decided to write one myself. The slide show script will be able to display image and the respective description in a predefined order. However, in this version, visitors would not be able to directly jump to a particular slide yet. The script is written in prototype‘s object-orientation approach hence you need to have prototype called.
Semantic Web is not just about putting data on the web, but also making links to allow a person as well as a machine to explore the web of data. Links are made in the web of data connects arbitrary things together as described by RDF as opposed to links in the web of hypertext, where links connects to only web-resources. Linkage of arbitrary things then allow related things to be found while performing search.
So apparently Annoy is now splitting points by using the centroids of 2 means clustering. It is claimed that it provides better results for ANN search, however, how does this impact regression? Purely out of curiosity, I plugged a new point splitting function and generated a new set of points.
(more…)