Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
I have been following this excellent guide written by Benjamin Thomas to set up my virtual machine for development purpose. However, when I am starting to configure a Ubuntu Quantal alpha machine, parts of the guide became inapplicable. Hence, this post is written as a small revision to the previously mentioned guide.
It is useful to have the terminal around whenever I code. However, while real screen estate is finite, having a terminal further limiting the amount of information that can be displayed at the same time. The problem with the terminal is that I don’t really need it all the time, so I usually find it buried under a group of windows.
Recently I volunteered in building a site that reports whether certain websites are blocked locally (please don’t ask why that is happening). As it is a very simple app reporting status I wanted it to be easily scrape-able. One of the decision made was I want it to have things to see on first load, this practically removes the possibility of using react, which is my current favorite.
I wanted to try using virtuoso as the storage engine for Redland but unfortunately there is no librdf-storage-virtuoso package for Ubuntu. After getting some help from @dajobe, I attempted to build the packages myself. Although it takes quite some time to build packages, but not too difficult it seems.
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).