Notes on codes, projects and everything
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
I often struggle to get my Javascript code organized, and have tried numerous ways to do so. I have tried putting relevant code into classes and instantiate as needed, then abuse jQuery’s data()
method to store everything (from scalar values to functions and callbacks). Recently, after knowing (briefly) how a jQuery plugin should be written, it does greatly simplify my code.
As the name implies, Resource Definition Framework, or RDF in short, is a language to represent information about resources in world wide web. Information that can be represented is mostly metadata like title (assuming the resource is a web-page), author, last modified date etc. Besides representing resource that is network-accessible, it can be used to represent things that cannot be accessed through the network, as long as it can be identified using a URI.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
After reading through the documentation, I find that the role based ACL and work flow can be more tightly integrated. Therefore I made all the transaction into many FSMs and my work flow component now consists of one work flow library and one work flow management model. As I am going a more normalized design (I use denormalized design in work as it deals with a lot of documents, however for a small project like mine, a denormalized design should do well).
Back then in college, we were given a lot of programming practices. These questions usually shows a desired output format, and we were required to write a program to print out the exact thing. Usually it involves printing a matrix of numbers, or symbols etc. For these problems, usually a loop structure or two should solve the problem.