Notes on codes, projects and everything
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
A few years ago, I was asked to build a game or simulation (alongside 2048) as a part of a job application. Being very impressed with Explorable Explanations, I implemented Conway’s Game of life with Javascript and jQuery (that was before ES6 became popular). Then I made a very simple grid maker jQuery plugin to dynamically generate a grid of divs. If you check the source code, you may realize I rely on Underscore.js a lot back then.
(more…)Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
The Nand2Tetris part I at coursera is very much my first completed course. It was so fun to actually work through the material and it feels amazing to know how simple it is to actually build a computer from scratch. While it is simple, it doesn’t mean the course itself is easy though. I was struggling to get the CPU wired up properly that I spent two to three days just to get it working.
It is very much expected that there will be endless stream of new (and often times better) tools introduced to solve the same set of problems. While I am slowly resuming my programming work, and in the process of reviving my very much dead postgrad project, I found some alternative to the tools I had used in the past. I suppose I shall just jot them down here so that there’s a reference for later use.
I am currently preparing myself in applying a postgrad programme and is looking for a research topic. At first I wanted to do something that is related to cloud computing but after some discussion with people around me, they suggest me to do something on semantic web. While posting my notes here, I realized that I had posted something on semantic network that looks like the base of semantic web here (Post still “Under construction” as of writing, will post the diagrams later tonight).