## (note (code cslai))

Notes on codes, projects and everything

# 2016 January

• ### Further Hack on the Multi-Dimensional Approximate Neighbour Search

Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.

• ### Approximate Neighbour Search in Multiple Dimensions

In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.

• ### Re-implementing Approximate Nearest Neighbour Search

Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.

• ### Information Retrieving with ….. a lot of libraries

Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.

## Random Posts

• ### Processing JSON with dask.bag

Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.

• ### Release of my app on bitbucket

Should have done this earlier, I was just being lazy to go through all the steps to publish it properly. So here it is, the full source is published to bitbucket. Feel free to fork the project if you are interested. I have not attach a licence to it but it will most probably be BSD licence. I have also uploaded the latest 0.0.2 release to bitbucket and would update the download link posted previously soon.

• ### Quick and Dirty way to manage my VIM config

Not sure about the others, but the obsession to my coding tools is probably more than I would admit. I have just managed to do a dirty quick hack to manage my VIM configuration settings. While I am sure there are other people doing this, I would like to show my reinvented wheels.

• ### Linting a libsvm-formatted data

While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.

• ### Re-implementing Approximate Nearest Neighbour Search

Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.