Notes on codes, projects and everything
Just managed to migrate all my blog sites to one centralized multi-site, so no more half-baked solution and hopefully this brings better plugin compatibility. I have not check with other related services (like Google Webmaster Tools) whether this cause any breakage though. Well, the main purpose of this blog post is actually a draft of what I did for the past two months for my postgraduate programme. Yea, I should have posted more stuff to this blog (just realized that my last post here is already like half a year ago).
Semantic Web is not just about putting data on the web, but also making links to allow a person as well as a machine to explore the web of data. Links are made in the web of data connects arbitrary things together as described by RDF as opposed to links in the web of hypertext, where links connects to only web-resources. Linkage of arbitrary things then allow related things to be found while performing search.
As the name implies, Resource Definition Framework, or RDF in short, is a language to represent information about resources in world wide web. Information that can be represented is mostly metadata like title (assuming the resource is a web-page), author, last modified date etc. Besides representing resource that is network-accessible, it can be used to represent things that cannot be accessed through the network, as long as it can be identified using a URI.
Folksonomy is a neologism of two words, ’folk’ and ’taxonomy’ which describes conceptual structures created by users [4, 5]. A folksonomy is a set of unstructured collaborative usage of tags for content classification and knowledge representation that is popularized by Web 2.0 and social applications [1, 5]. Unlike taxonomy that is commonly used to organize resources to form a category hierarchy, folksonomy is non-hierarchical and non-exclusive [3]. Both content hierarchy and folksonomy can be used together to better content classification.
After a year and half, a lot of things changed, and annoy also changed the splitting strategy too. However, I always wanted to do a proper follow up to the original post, where I compared boosting to Annoy. I still remember the reason I started that (flawed) experiment was because I found boosting easy.
(more…)Sometimes, letting a piece of code evolving by itself without much planning does not usually end well. However I was quite pleased with a by-product of it and I am currently formalizing it. So the by-product is some sort of DSL for a rule engine that I implemented to process records. It started as some lambda functions in Python but eventually becomes something else.
Just managed to migrate all my blog sites to one centralized multi-site, so no more half-baked solution and hopefully this brings better plugin compatibility. I have not check with other related services (like Google Webmaster Tools) whether this cause any breakage though. Well, the main purpose of this blog post is actually a draft of what I did for the past two months for my postgraduate programme. Yea, I should have posted more stuff to this blog (just realized that my last post here is already like half a year ago).
This post is purely based on my own speculation as there’s no experiment on real-life data to actually back the arguments. I am currently trying to document down a plan for my experiment(s) on recommender system (this reminds me that I have not release the Flickr data collection tool :/) and my supervisor advised to write a paragraph or two on some of the key things. Since he is not going to read it, so I might as well just post it here as a note.