Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Should have done this earlier, I was just being lazy to go through all the steps to publish it properly. So here it is, the full source is published to bitbucket. Feel free to fork the project if you are interested. I have not attach a licence to it but it will most probably be BSD licence. I have also uploaded the latest 0.0.2 release to bitbucket and would update the download link posted previously soon.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
I was invited to try Go (the programming language, not that board game) a few months ago, however I didn’t complete back then. The main reason was because it felt raw, compared to other languages that I know a fair bit better (for example Ruby). There was no much syntatic sugar around, and getting some work done with it feels “dirty”.
A really sweet new feature in the recently released update is the ability to change lockscreen shortcut. Unfortunately there is no easy way to change connection with my Jolla unlike my old Nokia N9 (no pun intended). As I have not been using my N9 for quite some time, I was only reminded when I came across this thread on TMO.
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).