Notes on codes, projects and everything
array_map function is a function that I use the most in my php scripts recently. However, there are times where I want to pass some non-array into it, therefore often times I have code like the snippet shown below:
$result = array_map(
'some_callback',
array_fill(0, count($some_array), 'some_string'),
array_fill(0, count($some_array), 'some_other_string'),
$some_array
)
It doesn’t look good IMO, as it makes the code looks complicated. Hence, after seeing how the code may vary in all different scenarios, I created some functions to clean up the array_map call as seen above. Code snippet after the jump
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
As the name implies, Resource Definition Framework, or RDF in short, is a language to represent information about resources in world wide web. Information that can be represented is mostly metadata like title (assuming the resource is a web-page), author, last modified date etc. Besides representing resource that is network-accessible, it can be used to represent things that cannot be accessed through the network, as long as it can be identified using a URI.
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
I finally put in some time and effort learning myself a bit of Rust. Though I am still struggling with ownership and lifetimes (which is essentially everything about the language, to be honest), I find it more interesting compared to Golang, which is relatively boring, though being functional (no pun intended). While learning the language, the one thing I came across often is the Option enum, then I remembered that I read something about Monad.