Notes on codes, projects and everything
So I first heard about Panda probably a year ago when I was in my previous job. It looked nice, but I didn’t really get the chance to use it. So practically it is a library that makes data looks like a mix of relational database table and excel sheet. It is easy to do query with it, and provides a way to process it fast if you know how to do it properly (no, I don’t, so I cheated).
To do node selection for DOM operations, one typically uses CSS selectors as (probably) popularized by jQuery. However, there is another alternative that is as powerful if not better known as XPath. XPath may be able to do a lot more than just selecting node (which I have no time to find out for now) but I will just focus on how to do node selection in this blog post.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
I was asked to evaluate fuzzy c-means to find out whether it is a good clustering algorithm for my MPhil project. So I spent the whole afternoon reading through some tutorial to get some basic understanding. Then I thought why not implement it in Clojure because it doesn’t look too complicated (I was so wrong…).