Notes on codes, projects and everything
While JSON is a fine data-interchange format, however it does have some limitations. It is well-known for its simplicity, that even a non-programmer can easily compose a JSON file (but humanity will surprise you IRL). Therefore, it is found almost everywhere, from numerous web APIs, to geospatial data (GeoJSON), and even semantic web (RDF/JSON).
Previously, I started practising recursions by implementing a type check on lat (list of atoms), and ismember (whether an atom is a member of a given lat). Then in the third chapter, named “Cons the Magnificent”, more list manipulation methods are being introduced.
In the last part, I implemented a couple of primitive functions so that they can be applied in the following chapters. The second chapter of the book, is titled “Do it again, and again, and again…”. The title already hints that readers will deal with repetitions throughout the chapter.
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
So my cheat with dask worked fine and dandy, until I started inspecting the output (which was to be used as an input for another script). While the script seemed to work fine, however when I started to parse each line I was hit with some funny syntax errors. After some quick inspection I found some of the lines was not printed completely.
Often times, I am dealing with JSONL files, though panda’s DataFrame is great (and blaze to certain extend), however it is offering too much for the job. Most of the received data is in the form of structured text and I do all sorts of work with them. For example checking for consistency, doing replace based on values of other columns, stripping whitespace etc.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.
Sometimes I really doubt about the advantage of recycling old stuff to fund for new units beyond goodwill. Sure you get to convince yourself that you are saving the environment by doing so, and it also saves money in the long run. However, I didn’t realize how much it generates it may be after trying to work out an answer for a fictional IQ question.
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.
I was invited to try Go (the programming language, not that board game) a few months ago, however I didn’t complete back then. The main reason was because it felt raw, compared to other languages that I know a fair bit better (for example Ruby). There was no much syntatic sugar around, and getting some work done with it feels “dirty”.
Just a quick update to the previous post, the virtuoso storage engine works with redland provided the required packages are properly installed (yes, yes, yes, I know I haven’t release my PHP OO wrapper for Redland). Now that the package is installed, we need to do some configuration so that Redland can use it.
Another half a day spent on figuring out how to package my daemon properly, fortunately with help from friends over at #harmattan IRC channel as well as cckwes, I finally get the deb package generated properly. So just a quick reminder on what my daemon does, it is just a quick hack that toggles the ‘allow background connections’ on and off depending which kind of data network a user is connected to. Apparently I am not the only one who are looking for this, as a feature request was filed long long time ago.
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX pattern.
This is the second part of the golang learning rant log. Previously on (note (code cslai)) I managed to make each line in the CSV into a hash map. So today I am going to make it into JSON Lines.