Notes on codes, projects and everything
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently I switched my search code to Annoy because the input dataset is huge (7.5mil records with 20k dictionary count). It wasn’t without issues though, however I would probably talk about it next time. In order to figure out what each parameters meant, I spent some time watching through the talk given by the author @fulhack.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
Javascript is getting so foreign to me these days, but mostly towards a better direction. So I recently got myself to learn react through work and the JSX extension makes web development bearable again. On the other hand, I picked up a little bit on Vue.js but really hated all the magic involved (No I don’t enjoy putting in code into quotes).
In the previous post, I re-implemented Annoy in 2D with some linear algebra maths. Then I spent some time going through some tutorial on vectors, and expanded the script to handle data in 3D and more. So instead of finding gradient, the perpendicular line in the middle of two points, I construct a plane, and find the distance between it and points to construct the tree.
Recently the term “Semantic Web” becomes extremely popular that Sitepoint blogs keep posting articles on this topic (1, 2). In my college days, I learned about Semantic Network and I wonder if there is some relationship between them. I’m not sure whether I get the concept correctly but in this article I would like to revise a bit on semantic network before going to semantic web. Please correct me if I’m wrong.
This post is purely based on my own speculation as there’s no experiment on real-life data to actually back the arguments. I am currently trying to document down a plan for my experiment(s) on recommender system (this reminds me that I have not release the Flickr data collection tool :/) and my supervisor advised to write a paragraph or two on some of the key things. Since he is not going to read it, so I might as well just post it here as a note.
Call me a cheapskate, as I still have not subscribe to a mobile data plan after purchasing my second smartphone, namely Nokia N9. There’s this ‘allow background connections’ option but it doesn’t care whether the connected network is a WLAN network or mobile data network. After finding out that Nokia has no interest in creating another separate option so that each type of network has their respective ‘allow background connections’ switch, I decided to make one for my own.