Notes on codes, projects and everything
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
array_map function is a function that I use the most in my php scripts recently. However, there are times where I want to pass some non-array into it, therefore often times I have code like the snippet shown below:
$result = array_map(
'some_callback',
array_fill(0, count($some_array), 'some_string'),
array_fill(0, count($some_array), 'some_other_string'),
$some_array
)
It doesn’t look good IMO, as it makes the code looks complicated. Hence, after seeing how the code may vary in all different scenarios, I created some functions to clean up the array_map call as seen above. Code snippet after the jump
Been trying my best to stick to the well-known UNIX Philosophy – “Do one thing and do it well”, so I have been breaking down my projects into numerous pieces of small tasks and rely on existing tools whenever possible. One of the existing tool that I use a lot is the GNU sort tool. Generally sort utility is really doing fine and dandy without having to configure anything, at least not until I realize the problem that leads to this post.
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
Implementing a Information Retrieval system is a fun thing to do. However, doing it efficiently is not (at least to me). So my first few attempts didn’t really end well (mostly uses just Go/golang with some bash tricks here and there, with or without a database). Then I jumped back to Python, which I am more familiar with and was very surprised with all the options available. So I started with Pandas and Scikit-learn combo.
This is the year I kept digging my old undergraduate notes on Statistics for work. First was my brief attempt wearing the Data Scientist performing ANOVA test to see if there’s correlation between pairs of variables. Then just recently I was tasked to analyze a survey result for a social audit project.
(more…)