Notes on codes, projects and everything
A new day, and a new post on job application. So this time instead of asking a snippet, I was actually asked to deliver some sort of a full application. Not sure why this was required, but I had fun creating them nonetheless. Though I would say I am not really a fan of creating visual stuff though (oh the crappy animation nearly killed me).
Another day, another programming assessment test. This time I was asked to generate some random data, then examine them to get their data type. Practically it is not a very difficult thing to do and I could probably complete it in fewer lines. I am pretty sure there are better ways to do this, as usual though.
I just failed a programming assessment test miserably yesterday and thought I should at least document it down. However, the problem with this is that the questions are copyrighted, so I guess I would write it from another point of view. So the main reason I failed was because I chose the wrong strategy to the problem, thinking it should be solution but as I put in time to that I ended up creating more problems.
Folksonomy is a neologism of two words, ’folk’ and ’taxonomy’ which describes conceptual structures created by users [4, 5]. A folksonomy is a set of unstructured collaborative usage of tags for content classification and knowledge representation that is popularized by Web 2.0 and social applications [1, 5]. Unlike taxonomy that is commonly used to organize resources to form a category hierarchy, folksonomy is non-hierarchical and non-exclusive [3]. Both content hierarchy and folksonomy can be used together to better content classification.
One of my recent tasks involving crawling a lot of geo-tagged data from a given service. The most recent one is crawling files containing a point cloud for a given location. So I began by observing the behavior in the browser. After exporting the list of HTTP requests involved in loading the application, I noticed there are a lot of requests fetching resources with a common rXXX
pattern.
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.
This is the year I kept digging my old undergraduate notes on Statistics for work. First was my brief attempt wearing the Data Scientist performing ANOVA test to see if there’s correlation between pairs of variables. Then just recently I was tasked to analyze a survey result for a social audit project.
(more…)This is the second part of the golang learning rant log. Previously on (note (code cslai)) I managed to make each line in the CSV into a hash map. So today I am going to make it into JSON Lines.