Notes on codes, projects and everything
array_map function is a function that I use the most in my php scripts recently. However, there are times where I want to pass some non-array into it, therefore often times I have code like the snippet shown below:
$result = array_map(
'some_callback',
array_fill(0, count($some_array), 'some_string'),
array_fill(0, count($some_array), 'some_other_string'),
$some_array
)
It doesn’t look good IMO, as it makes the code looks complicated. Hence, after seeing how the code may vary in all different scenarios, I created some functions to clean up the array_map call as seen above. Code snippet after the jump
While working on a text classification task, I spent quite some time preparing the training set for a given document collection. The project is supposed to be a pure golang implementation, so after some quick searching I found some libraries that are either a wrapper to libsvm, or a re-implementation. So I happily started to prepare my training set in the libsvm format.
Although my supervisor strongly recommend using JENA for RDF related work, but as I really don’t like Java (just personal preference), and wouldn’t want to install JRE/JVM (whatever it is called) at my shared server account, so I went to look for an alternative. After spending some time searching, I found this library called Redland and it provides binding for my current favorite language — PHP, so I decided to use this for my RDF work.
I saw this article from alistapart, which is about Javascript’s prototypal object orientation. So the article mentioned Douglas Crawford, and I was immediately reminded about my struggle in understanding the language itself. Back then I used to also refer to his site for a lot of notes in Javascript. So I went back to have a quick read, and found this article that discusses the similarity between Javascript and Lisp.
Traversing a tree structure often involves writing a recursive function. However, Python isn’t the best language for this purpose. Therefore I started flattening the tree into a key-value dictonary structure. Logically it is still a tree, but it is physically stored as a dictionary. Therefore it is now easier to write a simple loop to traverse it.
I came across a video on Youtube on Pi day. Coincidently it was about estimating the value of Pi produced by Matt Parker aka standupmaths. While I am not quite interested in knowing the best way to estimate Pi, I am quite interested in the algorithm he showed in the video however. Specifically, I am interested to find out how easy it is to implement in Python.